Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies

The Bayesian approach to variable selection in regression is a powerful tool for tackling many scientific problems. Inference for variable selection models is usually implemented using Markov chain Monte Carlo (MCMC). Because MCMC can impose a high computational cost in studies with a large number o...

Full beskrivning

Sparad:
Bibliografiska uppgifter
Huvudupphovsmän: Peter Carbonetto, Matthew Stephens
Materialtyp: Artigo
Språk:engelska
Publicerad: 2012
Länkar:https://doi.org/10.1214/12-ba703
https://projecteuclid.org/journals/bayesian-analysis/volume-7/issue-1/Scalable-Variational-Inference-for-Bayesian-Variable-Selection-in-Regression-and/10.1214/12-BA703.pdf
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!