Development of revised ResNet-50 for diabetic retinopathy detection
Abstract Background Diabetic retinopathy (DR) produces bleeding, exudation, and new blood vessel formation conditions. DR can damage the retinal blood vessels and cause vision loss or even blindness. If DR is detected early, ophthalmologists can use lasers to create tiny burns around the retinal tea...
Saved in:
Main Authors: | Chun‐Ling Lin, Kun-Chi Wu |
---|---|
Format: | Artigo |
Sprog: | engelsk |
Udgivet: |
2023
|
Online adgang: | https://doi.org/10.1186/s12859-023-05293-1 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05293-1 |
Tags: |
Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
|
Lignende værker
-
The DCT-CNN-ResNet50 architecture to classify brain tumors with super-resolution, convolutional neural network, and the ResNet50
af: Anand Deshpande, et al.
Udgivet: (2021) -
ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy Detection †
af: Yaqoob, Muhammad Kashif, et al.
Udgivet: (2021) -
ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy Detection
af: Muhammad Yaqoob, et al.
Udgivet: (2021) -
ResNet-50 for 12-Lead Electrocardiogram Automated Diagnosis
af: Sakli, Nizar, et al.
Udgivet: (2022) -
ResNet-50 for 12-Lead Electrocardiogram Automated Diagnosis
af: Nizar Sakli, et al.
Udgivet: (2022)