Spatial Filtering for EEG-Based Regression Problems in Brain–Computer Interface (BCI)
Electroencephalogram (EEG) signals are frequently used in brain-computer interfaces (BC!s), but they are easily contaminated by artifacts and noise, so preprocessing must be done before they are fed into a machine learning algorithm for classification or regression. Spatial filters have been widely...
Αποθηκεύτηκε σε:
Κύριοι συγγραφείς: | Dongrui Wu, Jung‐Tai King, Chun‐Hsiang Chuang, Chin‐Teng Lin, Tzyy‐Ping Jung |
---|---|
Μορφή: | Artigo |
Γλώσσα: | Αγγλικά |
Έκδοση: |
2017
|
Διαθέσιμο Online: | https://doi.org/10.1109/tfuzz.2017.2688423 |
Ετικέτες: |
Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
EEG-Based Brain–Computer Interfaces are Vulnerable to Backdoor Attacks
από: Lubin Meng, κ.ά.
Έκδοση: (2023) -
EEG-Based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications
από: Xiaotong Gu, κ.ά.
Έκδοση: (2021) -
Online EEG artifact removal for BCI applications by adaptive spatial filtering
από: Roberto Guarnieri, κ.ά.
Έκδοση: (2018) -
Using an EEG-Based Brain-Computer Interface for Virtual Cursor Movement with BCI2000
από: Wilson, J. Adam, κ.ά.
Έκδοση: (2009) -
A high-speed brain-computer interface (BCI) using dry EEG electrodes
από: Spüler, Martin
Έκδοση: (2017)