LFADS - Latent Factor Analysis via Dynamical Systems
Neuroscience is experiencing a data revolution in which many hundreds or thousands of neurons are recorded simultaneously. Currently, there is little consensus on how such data should be analyzed. Here we introduce LFADS (Latent Factor Analysis via Dynamical Systems), a method to infer latent dynami...
Uloženo v:
Hlavní autoři: | David Sussillo, Rafał Józefowicz, L. F. Abbott, Chethan Pandarinath |
---|---|
Médium: | Pré-impressão |
Jazyk: | angličtina |
Vydáno: |
2016
|
On-line přístup: | https://doi.org/10.48550/arxiv.1608.06315 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Podobné jednotky
-
Inferring single-trial neural population dynamics using sequential auto-encoders
Autor: Chethan Pandarinath, a další
Vydáno: (2018) -
Inferring single-trial neural population dynamics using sequential auto-encoders
Autor: Chethan Pandarinath, a další
Vydáno: (2017) -
Inferring single-trial neural population dynamics using sequential auto-encoders
Autor: Pandarinath, Chethan, a další
Vydáno: (2018) -
Latent Factors and Dynamics in Motor Cortex and Their Application to Brain–Machine Interfaces
Autor: Chethan Pandarinath, a další
Vydáno: (2018) -
Latent Factors and Dynamics in Motor Cortex and Their Application to Brain–Machine Interfaces
Autor: Pandarinath, Chethan, a další
Vydáno: (2018)