LFADS - Latent Factor Analysis via Dynamical Systems

Neuroscience is experiencing a data revolution in which many hundreds or thousands of neurons are recorded simultaneously. Currently, there is little consensus on how such data should be analyzed. Here we introduce LFADS (Latent Factor Analysis via Dynamical Systems), a method to infer latent dynami...

Ամբողջական նկարագրություն

Պահպանված է:
Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: David Sussillo, Rafał Józefowicz, L. F. Abbott, Chethan Pandarinath
Ձևաչափ: Pré-impressão
Լեզու:անգլերեն
Հրապարակվել է: 2016
Առցանց հասանելիություն:https://doi.org/10.48550/arxiv.1608.06315
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
Նկարագրություն
Ամփոփում:Neuroscience is experiencing a data revolution in which many hundreds or thousands of neurons are recorded simultaneously. Currently, there is little consensus on how such data should be analyzed. Here we introduce LFADS (Latent Factor Analysis via Dynamical Systems), a method to infer latent dynamics from simultaneously recorded, single-trial, high-dimensional neural spiking data. LFADS is a sequential model based on a variational auto-encoder. By making a dynamical systems hypothesis regarding the generation of the observed data, LFADS reduces observed spiking to a set of low-dimensional temporal factors, per-trial initial conditions, and inferred inputs. We compare LFADS to existing methods on synthetic data and show that it significantly out-performs them in inferring neural firing rates and latent dynamics.