Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences
Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs...
Gorde:
Egile Nagusiak: | Tzong-Yi Lee, Zong-Qing Lin, S C Hsieh, Neil Arvin Bretaña, Cheng-Tsung Lu |
---|---|
Formatua: | Artigo |
Hizkuntza: | ingelesa |
Argitaratua: |
2011
|
Sarrera elektronikoa: | https://doi.org/10.1093/bioinformatics/btr291 https://academic.oup.com/bioinformatics/article-pdf/27/13/1780/48869508/bioinformatics_27_13_1780.pdf |
Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
Antzeko izenburuak
-
PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity
nork: Lee, Tzong-Yi, et al.
Argitaratua: (2011) -
PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity
nork: Tzong-Yi Lee, et al.
Argitaratua: (2011) -
SNOSite: Exploiting Maximal Dependence Decomposition to Identify Cysteine S-Nitrosylation with Substrate Site Specificity
nork: Lee, Tzong-Yi, et al.
Argitaratua: (2011) -
SNOSite: Exploiting Maximal Dependence Decomposition to Identify Cysteine S-Nitrosylation with Substrate Site Specificity
nork: Tzong-Yi Lee, et al.
Argitaratua: (2011) -
A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs
nork: Hui‐Ju Kao, et al.
Argitaratua: (2015)