Showing
1 - 7
results of
7
Skip to content
登录
语言
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
Sámegiella
Монгол
Māori
全文检索
题名
作者
主题
索引号
ISBN/ISSN
标签
检索
高级检索
作者
Duan, Chenru
检索结果 - Duan, Chenru
Showing
1 - 7
results of
7
Refine Results
排序
相关性排序
日期递增
日期递增
索书号排序
作者排序
标题
1
New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts
由
Nandy, Aditya
,
Duan, Chenru
,
Goffinet, Conrad
,
Kulik, Heather J.
出版 2022
获取全文
获取全文
获取全文
Text
加到收藏夹
Saved in:
2
Accurate Multiobjective Design in a Space of Millions of Transition Metal Complexes with Neural-Network-Driven Efficient Global Optimization
由
Janet, Jon Paul
,
Ramesh, Sahasrajit
,
Duan, Chenru
,
Kulik, Heather J.
出版 2020
获取全文
获取全文
获取全文
Text
加到收藏夹
Saved in:
3
Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost
由
Duan, Chenru
,
Chu, Daniel B. K.
,
Nandy, Aditya
,
Kulik, Heather J.
出版 2022
获取全文
获取全文
获取全文
Text
加到收藏夹
Saved in:
4
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
由
Janet, Jon Paul
,
Duan, Chenru
,
Yang, Tzuhsiung
,
Nandy, Aditya
,
Kulik, Heather J.
出版 2019
获取全文
获取全文
获取全文
Text
加到收藏夹
Saved in:
5
Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles
由
Duan, Chenru
,
Chen, Shuxin
,
Taylor, Michael G.
,
Liu, Fang
,
Kulik, Heather J.
出版 2021
获取全文
获取全文
获取全文
Text
加到收藏夹
Saved in:
6
MOFSimplify, machine learning models with extracted stability data of three thousand metal–organic frameworks
由
Nandy, Aditya
,
Terrones, Gianmarco
,
Arunachalam, Naveen
,
Duan, Chenru
,
Kastner, David W.
,
Kulik, Heather J.
出版 2022
获取全文
获取全文
获取全文
Text
加到收藏夹
Saved in:
7
Seeing Is Believing: Experimental Spin States from Machine Learning Model Structure Predictions
由
Taylor, Michael G.
,
Yang, Tzuhsiung
,
Lin, Sean
,
Nandy, Aditya
,
Janet, Jon Paul
,
Duan, Chenru
,
Kulik, Heather J.
出版 2020
获取全文
获取全文
获取全文
Text
加到收藏夹
Saved in:
检索工具:
得到RSS订阅
推荐此搜索
Please ensure Javascript is enabled for purposes of
website accessibility