检索结果 - Conor Cafolla
- Showing 1 - 1 results of 1
-
1
Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans 由 Michael Roberts, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Avilés-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan Weir‐McCall, Zhongzhao Teng, Effrossyni Gkrania‐Klotsas, Alessandro Ruggiero, Anna Korhonen, Emily Jefferson, Emmanuel Ako, Georg Langs, G. Gozaliasl, Guang Yang, Helmut Prosch, Jacobus Preller, Jan Stanczuk, Jing Tang, Johannes Hofmanninger, Judith Babar, Lorena Escudero Sánchez, Muhunthan Thillai, Paula Martin Gonzalez, Philip Teare, Xiaoxiang Zhu, Mishal Patel, Conor Cafolla, Hojjatollah Azadbakht, Joseph Jacob, Josh Lowe, Kang Zhang, Kyle J Bradley, Marcel Wassin, Markus Holzer, Kangyu Ji, Maria Delgado Ortet, Tao Ai, Nicholas Walton, Píetro Lió, Samuel D. Stranks, Tolou Shadbahr, Weizhe Lin, Yunfei Zha, Zhangming Niu, James H.F. Rudd, Evis Sala, Carola‐Bibiane Schönlieb
出版 2021Artigo
相关主题
2019-20 coronavirus outbreak
Artificial intelligence
Computer science
Coronavirus disease 2019 (COVID-19)
Disease
Infectious disease (medical specialty)
Intensive care medicine
Law
MEDLINE
Machine learning
Medical physics
Medicine
Operating system
Outbreak
Pathology
Political science
Radiography
Radiology
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Upload