Ngā hua rapu - Cam‐CAN
- E whakaatu ana i te 1 - 18 hua o te 18
-
1
-
2
-
3
-
4
-
5
-
6
-
7
A watershed model of individual differences in fluid intelligence mā Rogier Kievit, Simon W. Davis, John D. Griffiths, Marta Correia, Cam‐CAN, Richard N. Henson
I whakaputaina 2016Artigo -
8
Transient neural network dynamics in cognitive ageing mā Roni Tibon, Kamen A. Tsvetanov, Darren Price, David J. Nesbitt, Cam Can, Richard N. Henson
I whakaputaina 2021Artigo -
9
-
10
Erratum to “A watershed model of individual differences in fluid intelligence” [Neuropsychologia 91 (2016) 186–198] mā Kievit, Rogier A., Davis, Simon W., Griffiths, John, Correia, Marta M., Cam-CAN, Henson, Richard N.
I whakaputaina 2017Text -
11
Cerebral blood flow predicts multiple demand network activity and fluid intelligence across the adult lifespan mā Wu, Shuyi, Tyler, Lorraine K., Henson, Richard N.A., Rowe, James B., Cam-CAN, Tsvetanov, Kamen A.
I whakaputaina 2022Text -
12
-
13
Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography mā Phillips, Holly N., Blenkmann, Alejandro, Hughes, Laura E., Kochen, Silvia, Bekinschtein, Tristan A., Cam-CAN, Rowe, James B.
I whakaputaina 2016Text -
14
-
15
-
16
The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample mā Jason R. Taylor, Nitin Williams, Rhodri Cusack, Tibor Auer, Meredith A. Shafto, Marie Dixon, Lorraine K. Tyler, Cam‐CAN, Richard N. Henson
I whakaputaina 2015Artigo -
17
The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample mā Taylor, Jason R., Williams, Nitin, Cusack, Rhodri, Auer, Tibor, Shafto, Meredith A., Dixon, Marie, Tyler, Lorraine K., Cam-CAN, Henson, Richard N.
I whakaputaina 2017Text -
18
The effect of ageing on f<scp>MRI</scp>: Correction for the confounding effects of vascular reactivity evaluated by joint f<scp>MRI</scp> and <scp>MEG</scp> in 335 adults mā Kamen A. Tsvetanov, Richard N. Henson, Lorraine K. Tyler, Simon W. Davis, Meredith A. Shafto, Jason R. Taylor, Nitin Williams, Cam‐CAN, James B. Rowe
I whakaputaina 2015Artigo
Ngā utauta rapu:
Ngā marau whai pānga
Neuroscience
Psychology
Cognition
Computer science
Medicine
Cognitive psychology
Functional connectivity
Ageing
Artificial intelligence
Functional magnetic resonance imaging
Internal medicine
Electroencephalography
Environmental health
Magnetic resonance imaging
Physics
Population
Programming language
Radiology
Resting state fMRI
Artificial neural network
Astrophysics
Brain activity and meditation
Brain aging
Cardiology
Cognitive aging
Cognitive neuroscience
Cognitive science
Convergence of random variables
Correlation
Correlation coefficient